Decision making
Data: Response probability, response time (RT)
Manipulations: Task difficulty, speed-accuracy tradeoff

Signal-detection theory

Binary hypothesis set $\left\{H_{1}, H_{2}\right\}$
Univariate observation x
Likelihoods $p_{i}(x)=\mathrm{p}\left(x \mid H_{i}\right)$
Posterior $\frac{\operatorname{Pr}\left[H_{1} \mid x\right]}{\operatorname{Pr}\left[H_{2} \mid x\right]}=\frac{\operatorname{Pr}\left[H_{1}\right]}{\operatorname{Pr}\left[H_{2}\right]} \cdot \frac{p_{1}(x)}{p_{2}(x)}$
Optimal response: 1 if $\frac{p_{1}(x)}{p_{2}(x)}>\frac{\operatorname{Pr}\left[H_{2}\right]}{\operatorname{Pr}\left[H_{1}\right]}$, else 2
Can also include asymmetric rewards: response 1 iff $\frac{p_{1}(x)}{p_{2}(x)}>\frac{\operatorname{Pr}\left[H_{2}\right]}{\operatorname{Pr}\left[H_{1}\right]} \cdot \frac{R_{2 \mid H_{2}}-R_{1 \mid H_{2}}}{R_{1\left|H_{1}-R_{2 \mid}\right| H_{1}}}$
Models response bias

Random walk model

Multiple observations $\left(x_{i}\right)_{i=1,2, \ldots}$
Posterior log-odds: $\ln \frac{\operatorname{Pr}\left[H_{1} \mid \mathbf{x}\right]}{\operatorname{Pr}\left[H_{2} \mid \mathbf{x}\right]}=\ln \frac{\operatorname{Pr}\left[H_{1}\right]}{\operatorname{Pr}\left[H_{2}\right]}+\sum_{i} \ln \frac{p_{1}\left(x_{i}\right)}{p_{2}\left(x_{i}\right)}$
Evidence: Belief on log-odds scale
Prior log-odds, posterior log-odds, loglikelihood ratio
Simply update: $E_{n}=E_{0}+\sum_{i=1}^{n} L\left(x_{i}\right)$
Random walk
Stopping rule
After trial n, sample more or stop and give a response
$\mathrm{RT}=n \tau$ for some time increment τ
Optimal: continue until $\left|E_{n}\right|>\alpha$ (decision threshold)
Wald-Wolfowitz theorem: minimizes mean RT for a given $\operatorname{Pr}[$ correct $]$
Speed-accuracy tradeoff
Higher threshold \rightarrow longer mean RT but higher probability correct
Task difficulty
Average rate of random walk
Separation of p_{1} and p_{2}
$\mathrm{E}\left[L(x) \mid H_{1}\right]=\int \ln \frac{p_{1}(x)}{p_{2}(x)} \cdot p_{1}(x) \mathrm{d} x$

$$
=K L\left(p_{1} \| p_{2}\right)
$$

$\mathrm{E}\left[L(x) \mid H_{2}\right]=-K L\left(p_{2}| | p_{1}\right)$
Kullback-Leibler divergence: difference between two distributions, always nonnegative
Diffusion model
Drop rational interpretation
Process model: accumulation of psychological evidence
Continuous time
Limit of timestep $\tau \rightarrow 0$
Evidence rate $\mathrm{E}[\Delta E] / \tau \rightarrow \mu$
Variance $\operatorname{var}[\Delta E] / \tau \rightarrow \sigma^{2}$
Wiener diffusion process (directed Brownian motion)
Continuous-time stochastic process
Markov: $E\left(t_{2}\right)-E\left(t_{1}\right) \perp E\left(t_{1}\right)$ for $t_{1}<t_{2}$
Linear growth: $\mathrm{E}\left[E\left(t_{2}\right)-E\left(t_{1}\right)\right]=\left(t_{2}-t_{1}\right) \cdot \mu$
Linear noise: $\operatorname{var}\left[E\left(t_{2}\right)-E\left(t_{1}\right)\right]=\left(t_{2}-t_{1}\right) \cdot \sigma^{2}$
Central limit theorem: $E\left(t_{2}\right)-E\left(t_{1}\right) \sim \mathcal{N}\left(\left(t_{2}-t_{1}\right) \cdot \mu,\left(t_{2}-t_{1}\right) \cdot \sigma^{2}\right)$

Starting point $z=E(0)$: response bias
Drift rate μ : task difficulty
Thresholds $\{0, a\}$: speed-accuracy tradeoff
Diffusion rate σ^{2} : noise, usually ignored by scaling other parameters
Predictions unchanged under $(z, \mu, a, \sigma) \rightarrow(z \cdot c, \mu \cdot c, a \cdot c, \sigma \cdot c)$ for any c
Predictions
Simulation of each trial, $\tau \approx 1 \mathrm{~ms}$
Analytic series for density

$$
\mathrm{p}\left[r_{1}, t \mid H_{1}\right]=\frac{\pi \sigma^{2}}{a^{2}} e^{\frac{\mu(a-z)}{\sigma^{2}}} \sum_{k=1}^{\infty} k \sin \left(\frac{k \pi(a-z)}{a}\right) e^{-\frac{k^{2} \pi^{2} \sigma^{4}+a^{2} \mu^{2}}{2 a^{2} \sigma^{2}} t}
$$

or for cumulative distribution

$$
\mathrm{p}\left[r_{1}, R T \leq t \mid H_{1}\right]=\mathrm{p}\left[r_{1} \mid H_{1}\right]-\frac{\pi \sigma^{2}}{a^{2}} e^{\frac{\mu(a-z)}{\sigma^{2}}} \sum_{k=1}^{\infty} \frac{2 k a^{2} \sigma^{2}}{k^{2} \pi^{2} \sigma^{4}+a^{2} \mu^{2}} \sin \left(\frac{k \pi(a-z)}{a}\right) e^{-\frac{k^{2} \pi^{2} \sigma^{4}+a^{2} \mu^{2}}{2 a^{2} \sigma^{2}} t}
$$

Marginal response probability

$$
\mathrm{p}\left[r_{1} \mid H_{1}\right]=\frac{1-e^{-\frac{2 \mu z}{\sigma^{2}}}}{1-e^{-\frac{2 \mu a}{\sigma^{2}}}}
$$

Fitting by χ^{2} for discrete probabilities
Bin RT by empirical quantiles, usually .1, .3, .5, .7, .9
12 possible outcomes for each trial
$\chi^{2}=\sum_{\text {bin }} \frac{\left(f^{\text {model }}-f^{\text {data }}\right)^{2}}{f^{\text {model }}}$

